Quali-quantitative analysis of flavonoids of *Cornus mas* L. (Cornaceae) fruits

Agata Maria Pawlowska a, Fabiano Camangi b, Alessandra Braca a, *

a Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 33, 56126 Pisa, Italy

b Scuola Superiore S. Anna di Studi Universitari e di Perfezionamento di Pisa, Piazza Martiri della Libertà 33, 56127 Pisa, Italy

* Corresponding author. Tel.: +39-050-2219688, fax: +39-050-221660; e-mail: braca@farm.unipi.it. (A. Braca)
Abstract

The methanol extract obtained from the ripe fruits of *Cornus mas* L. (Cornaceae) have been phytochemically studied. On the basis of HPLC-PDA-MS/MS analyses eight compounds have been recognized as quercetin, kaempferol, and aromadendrin glycosilated derivatives. Three major compounds have been also isolated by Sephadex LH-20 column chromatography followed by HPLC and characterized by NMR spectroscopy. Moreover, LC-PDA-MS analyses of the red pigment revealed the presence of three anthocyanins. The quantitative analysis of all compounds was reported.

Keywords: *Cornus mas*, flavonoids, anthocyanins, HPLC, ESI-MS/MS

1. Introduction

Cornus mas L. (Cornaceae family) known as the European and Asiatic cornelian cherry is a species of dogwood native to Southern Europe and Southwest Asia. It is a medium to large deciduous shrub or small tree growing to 5-12 m tall, with dark brown branches and greenish twigs. The fruit is an oblong, red drupe 2 cm long and 1.5 cm in diameter, containing a single seed. The fruit is edible, but the unripe is astringent. The most common use of cornelian cherry fruits, is to produce different drinks, sweets, gels, and jams (Millspaugh, 1974). Extract from the fruits is also used in Europe for cosmetic purposes, replacing synthetic astringent substances, and are claimed to exert a favorable
action on the human complexion (Polinicencu, Popesci, & Nistor, 1980). As ornamental,
cornelian cherry, with its brilliant leaves and abundant, attractive flowers, is employed
with very interesting effect in parks and small gardens (Slimestad & Andersen, 1998).

Fruits and vegetables are a good source of natural antioxidants, which containing many
different radical scavenger components provide protection against harmful-free radicals
and so are associated with lower incidence and mortality rates of cancer and heart
diseases in addition to a number of other health benefits (Wang, Cao, & Prior, 1996; Shui
& Leong, 2006). Among natural compounds, phenolics and in particular flavonoids were
found to be an important part of human diet and are considered as active principles in
many medicinal plants. In addition, flavonoids with their subclass anthocyanins,
contribute the yellow, orange, red, and blue color to flowers, fruits, and vegetables
(Cooper-Driver, 2001), and could become important in the replacing of the synthetic
pigments by the natural ones.

There are some investigations regarding the physical and chemical properties of
cornelian cherry fruits, their antioxidant capacity, phenol, ascorbic acid, as well as
anthocyanin contents (Tural & Koca, 2008; Vareed, Reddy, Schutzki, & Nair, 2006;
Marinova, Ribarova, & Atanassova, 2005; Klimenko, 2004; Demir & Kalyoncu, 2003;
Seeram, Schutzki, Chandra, & Nair, 2002; Didin, Kizlaslan, & Fenercioğlu, 2000;
Guleryuz, Bolat, & Pirlak, 1998). Two old studies revealed that the berries of C. mas
contain five anthocyanins, identified by paper chromatography, spectrophotometric, and
peroxide oxidation analyses as delphinidin 3-galactoside, cyanidin 3-galactoside,
cyanidin 3-rhamnosylgalactoside, pelargonidin 3-galactoside, and pelargonidin 3-
rhamnosylgalactoside (Du & Francis, 1973a; Du & Francis, 1973b). The later work
(Seeram et al., 2002) showed that anthocyanins of cornelian cherry are the mixture of three compounds: delphinidin 3-O-galactoside, cyanidin 3-O-galactoside, and pelargonidin 3-O-galactoside. The last data (Tural & Koca, 2008) indicated as three main C. mas anthocyanins cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, and pelargonidin 3-O-glucoside. However, the survey of the literature revealed that the flavonoids content of the fruits has never been reported.

The objectives of this study were to identify individual flavonoids of the fruits, evaluate their profile, and compare the content of anthocyanins, in order to contribute to the knowledge the potential value of these fruits as food.

2. Materials and methods

2.1. Plant material

Cornus mas L. fruits were collected in Riparbella (PI), Italy, in September 2006. The specimen was further identified and authenticated by Dr. Fabiano Camangi, Scuola Superiore S. Anna di Studi Universitari e di Perfezionamento di Pisa, Pisa, Italy.

2.2. Reagents

Standard of quercetin 3-O-rutinoside was purchased from Merck (E. Merck, Darmstadt, Germany). Standards of cyanidin 3-O-galactoside and pelargonidin 3-O-glucoside were obtained from Extrasynthese (Extrasynthese, France). Standard of pelargonidin 3-O-rutinoside was kindly provided by Indena, Italy. HPLC grade acetonitrile (CH$_3$CN), formic (HCOOH) and acetic (CH$_3$COOH) acids were purchased from J.T. Baker (Baker
Mallinckrodt, Phillisburg, NJ, USA). HPLC grade water (18 mΩ) was prepared by a Mill-Ω⁵⁰ purification system (Millipore Corp., Beddford, MA, USA).

2.3. General methods

An Avance Bruker 250 NMR spectrometer was used for NMR experiments; chemical shifts are expressed in δ (parts per million) referenced to the solvents peaks δ_H 3.34 and δ_C 49.0 for CD₃OD. Column chromatography was performed over Sephadex LH-20 (Pharmacia, Uppsala, Sweden); HPLC separations were conducted on a Shimadzu LC-8A (Shimadzu Corp., Kyoto, Japan) series pumping system equipped with a Waters R401 refractive index detector and a Shimadzu injector with a Waters µ-Bondapak C₁₈ column (7.8 × 300 mm, 10 μm, Waters, Milford, MA, USA). Thin-layer chromatography (TLC) was performed on precoated Kieselgel 60 F₂₅₄ plates (E. Merck, Darmstad, Germany). HPLC-PDA-ESI-MS analyses were performed using a Surveyor LC pump, a Surveyor autosampler, coupled with a Surveyor PDA detector, and a LCQ Advantage ion trap mass spectrometer (Thermo Finnigan, San Jose, CA) equipped with Xcalibur 3.1 software. Flavonoid analyses were performed using a 4.6 × 250 mm, 5.0 μm, X Terra C₁₈ column (Waters, Milford, MA) and the eluent was a mixture of 0.1% acetonitrile solution of CH₃COOH (solvent A) and 0.1% aqueous solution of CH₃COOH (solvent B). The solvent gradient was as follows: 0-50 min, 8-45% (A). Elution was performed at a flow rate of 1.0 ml/min with a splitting system of 2:8 to MS detector (200 μl/min) and PDA detector (800 μl/min), respectively. Analyses were performed with an ESI interface in the negative mode. The ionization conditions were optimized, and the parameters were as follows: capillary temperature, 260 °C; capillary voltage, 18 V; tube lens offset, 5 V;
sheath gas flow rate, 60 arbitrary units; auxiliary gas flow rate, 6 arbitrary units; spray
voltage, 4.5 kV; scan range of m/z 200-700. PDA data were recorded with 220-500 nm
range with the preferential channels 254 and 324 nm as the detection wavelengths.
Anthocyanin analyses were performed using a 4.6 × 250 mm, 4 µm, Synergi Polar-RP 80
A column (Phenomenex Corp., Torrance, CA) and the eluent was a mixture of 1%
acetonitrile solution of HCOOH (solvent A) and 1% aqueous solution of HCOOH
(solvent B). The solvent gradient was as follows 0-20 min, 8-25% (A). Elution was
performed at a flow rate of 1 ml/min with the splitting system of 2:8 to MS detector,
respectively. Analyses were conducted with an ESI interface in the positive mode.
Cyanidin 3-O-galactoside was used to optimize the ionization and the fragmentation
conditions; parameters were as follows: capillary temperature, 280 °C; capillary voltage,
11 V; tube lens offset, 15 V; sheath gas flow rate, 60 arbitrary units; auxiliary gas flow
rate, 6 arbitrary units; spray voltage, 3.5 kV; scan range of m/z 200-700. PDA data were
recorded with 220-600 nm range with a preferential channel of 515 nm as the detection
wavelength. In both cases N₂ was used as the sheath and auxiliary gas. The volumes of
injections were 20 µl. HPLC-PDA quantitative analyses were performed using a Waters
600E multisolvent delivery system, a Waters 717plus autosampler, and a Waters 996
PDA detector (Waters, Milford, MA) equipped with Millenium³² Chromatography
Manager Software. The experimental conditions (solvent gradient, PDA channels, and
columns) were the same as described above. The volume of injection was 25 µl.
Quantitative determination was carried using calibration curves of standards. Quercetin
3-O-rutinoside, aromadendrin 7-O-glucoside, and cyanidin 3-O-galactoside were selected
as the external standards of calibration for flavonols, dihydroflavonol, and anthocyanins,
respectively. Standard calibration curves were prepared in a concentration range 0.0005-0.05 mg/ml with five different concentration levels (0.0005, 0.001, 0.005, 0.01, and 0.05 mg/ml) for quercetin 3-\(O\)-rutinoside and in a range of 0.001-0.05 mg/ml with four concentration levels (0.001, 0.005, 0.01, and 0.05 mg/ml) for aromadendrin 7-\(O\)-glucoside and cyanidin 3-\(O\)-galactoside. Triplicate injections were made for each level, and a weight linear regression was generated. The calibration curves with the external standards were obtained using concentration (mg/ml) with respect to the area obtained from the integration of the PDA peaks at a wavelength of 254 nm for flavonoids, 285 nm for dihydroflavonol, and 515 nm for anthocyanins. The relation between variables was analyzed using linear simple correlation. For the linear regression of the external standard, \(R^2\) was 0.9993 for quercetin 3-\(O\)-rutinoside, 0.9996 for aromadendrin 7-\(O\)-glucoside, and 0.9998 for cyanidin 3-\(O\)-galactoside, respectively. For the quantification of the compounds, a GraphPad Software Prism 3.0 was used. The amount of the compound was finally expressed in mg/10 g of fresh fruits.

2.4. Extraction, isolation, and identification of flavonoids

Lyophilized fruits of \(C.\) \(mas\) (280 g) were defatted at room temperature with \(n\)-hexane, and extracted with MeOH by exhaustive maceration (5 \(\times\) 500 ml) to yield 178 g of residue, which was dissolved in water and partitioned firstly with EtOAc and then with \(n\)-BuOH. The dried \(n\)-butanol extract (5 g) was subjected to fractionation on a Sephadex LH-20 column, using MeOH as eluent at a flow rate of 0.8 ml/min. Fractions of 8 ml were collected and grouped into ten (A-J) fractions by TLC analyses on silica 60 F\(_{254}\) gel-coated glass sheets developed with \(n\)-BuOH-AcOH-H\(_2\)O (60:15:25) as the eluent.
Fractions G (55.9 mg), H (36.1 mg), I (21.3 mg), and J (31.4 mg) were separately purified by RP-HPLC on a 7.8 x 300 mm i.d., C\textsubscript{18} \(\mu\)-Bondapak column at a flow rate of 2.0 ml/min with MeOH-H\textsubscript{2}O (45:55) for fraction G, MeOH-H\textsubscript{2}O (35:65) for fraction H, MeOH-H\textsubscript{2}O (3:7) for fraction I, and MeOH-H\textsubscript{2}O (4:6) for fraction J, to afford compounds 1 (6.1 mg, \(t_R = 12\) min) and 7 (2.5 mg, \(t_R = 30\) min) from fraction H, 4 (12.0 mg, \(t_R = 20\) min) from fraction G, and 7 from fraction I (1.5 mg, \(t_R = 16\) min) and J (3.3 mg, \(t_R = 9\) min), respectively. Compounds were identified by spectroscopic methods and HPLC-PDA-ESI-MS analysis with authentic standards (Fig. 1):

Aromadendrin 7-O-\(\beta\)-D-glucoside (1): yellow amorphous powder. Negative ESI-MS: \(m/z\) 449 [M-H]. \(^1\)H and \(^{13}\)C data are consistent with previously published data (Slimestad, Anderson, & Francis, 1994).

Quercetin 3-O-\(\beta\)-D-xyloside (2): ESI-MS: \(m/z\) 433 [M-H]. The compound was identified by HPLC-PDA-ESI-MS analysis (retention time, UV spectrum, and ESI-MS spectrometric data) and comparison with authentic standard.

Quercetin 3-O-\(\alpha\)-L-rhamnoside (3): ESI-MS: \(m/z\) 447 [M-H]. The compound was identified by HPLC-PDA-ESI-MS analysis (retention time, UV spectrum, and ESI-MS spectrometric data) and comparison with authentic standard.

Quercetin 3-O-rutinoside (4): yellow amorphous powder. Negative ESI-MS: \(m/z\) 609 [M-H]. \(^1\)H and \(^{13}\)C data are consistent with previously published data (Rastrelli, Saturnino, Schettino, & Dini, 1995).

Quercetin 3-O-\(\beta\)-D-galactoside (5): ESI-MS: \(m/z\) 463 [M-H]. The compound was identified by HPLC-PDA-ESI-MS analysis (retention time, UV spectrum, and ESI-MS spectrometric data) and comparison with authentic standard.
Quercetin 3-O-β-D-glucoside (6): ESI-MS: m/z 463 [M-H]. The compound was identified by HPLC-PDA-ESI-MS analysis (retention time, UV spectrum, and ESI-MS spectrometric data) with authentic standard.

Quercetin 3-O-β-D-glucuronide (7): yellow amorphous powder. ESI-MS: m/z 477 [M-H]. 1H and 13C data are consistent with previously published data (Moon, Tsushida, Nakahara, & Terao, 2001).

Kaempferol 3-O-β-D-galactoside (8): ESI-MS: m/z 447 [M-H]. The compound was identified by HPLC-PDA-ESI-MS analysis (retention time, UV spectrum, and ESI-MS spectrometric data) and comparison with authentic standard.

2.5. Extraction and identification of anthocyanins

Fresh fruits (10 g) of C. mas were homogenized in 60 ml of 2% HCl methanol solution. The solution was filtered on Büchner funnel and the filtrate was used for HPLC analyses. Identifications were made by comparison of MS, PDA/UV, and retention data recorded for standard anthocyanins.

3. Results and discussion

The methanol extract of the fruits of C. mas was partitioned with n-hexane, EtOAc, and n-BuOH. The butanol extract was subjected to fractionation with an initial separation by Sephadex LH-20 column chromatography. Subsequent purification of the fractions by semipreparative HPLC led to the isolation of three compounds: aromadendrin 7-O-β-D-glucoside (1), quercetin 3-O-rutinoside (4), and quercetin 3-O-β-D-glucuronide (7) (Fig.
The structure of the isolated compounds was established by 1H and 13C NMR data and confirmed by comparison with those reported in the literature. The presence of not isolated compounds, quercetin 3-O-β-D-xyloside (2), quercetin 3-O-α-L-rahmnoside (3), quercetin 3-O-β-D-galactoside (5), quercetin 3-O-β-D-glucoside (6), and kaempferol 3-O-β-D-galactoside (8), was revealed by evaluation of the flavonoid profile throughout HPLC-PDA-ESI-MS analyses. The components were identified by comparison of obtained data (retention times, UV spectra, MS spectrometric data) with those of authentic standards. The LC-MS Base Peak chromatogram of the methanol extract and the chromatographic, spectroscopic, and spectrometric data, as well as, the quantitative amounts of individual compounds are shown in Fig. 2 and Table 1, respectively. Results obtained from quantitative analyses demonstrated the flavonoids content of 221.3 mg/10 of fruits. Methanol extract of cornelian cherries presented rich flavonoid glycosides composition, that included eight compounds. Except for compound 1, which belongs to the dihydroflavonols, they were all O-flavonol glycosides with quercetin and kaempferol as aglycones and oligosaccharide moieties as mono- or disaccharides linked at the 3-OH position. Quercetin 3-O-β-D-glucuronide (7) was the major constituent (69.9 mg), followed by kaempferol 3-O-β-D-galactoside (8) (41.3 mg).

The anthocyanin profile of cornelian cherry berries was carried out by means of HPLC-PDA-ESI-MS analyses. The chromatogram of the anthocyanins extract, recorded at 515 nm, is shown in Fig. 3. All the compounds were identified by comparison of their HPLC retention times, elution orders, ESI-MS spectrometric data, and photodiode array PDA/UV-vis with anthocyanin standards (Table 2). Compound 9 was recognized as cyanidin 3-O-galactoside, 10 as pelargonidin 3-O-glucoside, and 11 as pelargonidin 3-O-
rutinoside, respectively (Fig. 1). Our results of the anthocyanin qualitative composition were not completely in agreement with those previously mentioned (Du & Francis, 1973a; Du & Francis, 1973b; Seeram et al., 2002; Tural & Koca, 2008). The total amount of anthocyanins (Table 2) in *C. mas* fruits, determined on the cyanidin 3-O-galactoside basis, was 11.7 mg/10 g of fresh fruits. This result is quite comparable with those reported by Tural et al. (2008) and Pantelidis et al. (2007). Pelargonidin 3-O-glucoside (10) was the predominant anthocyanin, followed by cyanidin 3-O-galactoside (9). Pelargonidin 3-O-rutinoside was the least abundant one and present only in trace. The differences in the composition of the fruits, could depend on the growing conditions, such as soil, geographical and environmental conditions during the fruit development, degree of maturity at harvested, and/or genetic differences.

Considering, that the epidemiological and experimental studies are correct in suggesting that higher intake of phenolics from food are associated with reduced risk of cancer, heart disease, and stroke, the immediate challenge is how to increase the level of these beneficial phytochemicals in major food plants and find their new sources. The fruits of cornelian cherry revealed the presence of considerable amounts of flavonoids. Thus, results of the present study supported the antioxidant and nutraceutical potential of this plant species.

