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ABSTRACT 

The paper analyzes the problem of the optimum thermal design of free and forced convection fin arrays 

composed of longitudinal fins with constant thickness. Two different optimization problems have been 

considered: the minimization of the weight for a given heat flow and the maximization of the heat flow for a 

given fin weight. Two different geometrical configurations of the fin  array have been considered: closed array 

and open array. The procedure for the optimization is provided in a general case and a complete analytical 

solution of the problem, for the case with the tip approximated as being insulated, is developed. The paper 

contains several illustrative examples of the application of the proposed optimization procedure.  
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List of symbols 

b fin thickness,     m 

Bi  Biot number of the fin 

'Bi  Biot number of the interfin space 

c interfin spacing,     m 

'c  minimum interfin spacing,      m 

H base surface dimension,     m 

h heat transfer coefficient on the fin faces, W/m2K 

h* heat transfer coefficient on the fin tip,  W/m2K 

'h  heat transfer coefficient on the base,    W/m2K 

int(•) integer part of a real number 

k fin thermal conductivity,      W/m K 

A  longitudinal fin length,      m 

chA  characteristic fin length,     m 

L fin height,      m 

L Lagrangian function 

m limit value of Bi for the accuracy criterion 

mg limit value of Bi for the geometrical constraint 

NR fin array effectiveness or removal number 

n number of fins of the array (integer) 

n* number of fins (real) at which the maximum heat flow 

occurs 

n  number of fins (real) identified as 1'c/H ±  

n0 number of fins (real) 

n-, n+ number of fins (real) defined by Eq. (52) 

Q�  heat flow,      W 

sup least upper value 

T0 fin base temperature,      K 

Tf temperature of the fluid,        K 

u, v auxiliary variables defined by (44) 

Y auxiliary variable defined by (45a) 

W weight,       kg 

Z auxiliary variable defined by (45b) 
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Greek symbols 

β auxiliary variable for the optimization method 

ΔT0f temperature difference defined as (T0-Tf) 

εsf effectiveness (removal number) of a single fin 

λ Lagrange multiplier 

ρ shape factor of the longitudinal fin 

γ specific weight of the fin material,       kg/m3 

χ dimensionless heat flow of the fin  

X  dimensionless heat flow of the array 

ϕ heat flow enhancement factor of the single fin 

Φ heat flow enhancement factor of the array 

ψ dimensionless weight of the fin 

Ψ dimensionless weight of the array 

 ω, 'ω  boundary ratios defined by Eqs. (3) 

ω̂  generic boundary ratio 

 

Subscripts 

F relative to the single fin 

g relative to the geometrical constraint 

m relative to the accuracy criterion  

max maximum value 

opt optimum value 

S relative to the plain surface 

0 relative to a particular value 
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1. Introduction 

In the industrial practice, arrays of longitudinal rectangular profile fins are largely used to 

improve both the reliability and performance of electronic, telecommunications and power 

conversion systems and they find a specific application in the heat sinks  for electronic 

cooling. The increase in the power density of electronic components currently under 

development and newer applications in the automotive industry and air cooled fuel cells 

require significant improvement in performance and are reshaping the way we design and 

manufacture heat sinks and finned arrays. This require a reexamination of the materials and 

methods used to manufacture fin arrays and optimization criteria. The optimization of 

extended surfaces is a classical heat conduction problem [1-3] but there are a lot of aspects 

requiring to be investigated and clarified mainly for what concerns the optimization of free 

and forced convection fin arrays. The analysis of recent literature shows that the argument is 

still object of discussion [4-5].  

 

 
Figure 1. Fin arrays for cooling of electronic equipments and fuel cells 

 

The longitudinal rectangular fin arrays made possible an analytical approach to the optimum 

design, that can furnish suggestions also for more complex extended surface configurations.  

It is possible to formulate several optimum design problems of fin arrays in convective heat 

transfer. In particular for arrays of longitudinal rectangular fins with constant thickness, there 

are mainly two approaches to perform a thermal optimization: 
 

1) minimization of the weight for a given heat flow (dissipation), or maximization of the heat 

flow for a given weight, the dimensions of the optimum fin array are obtained assuming it 

composed by individually optimized fins; 

2) considering simultaneously the fins and the unfinned area on the array base, a particular 

objective function to be minimised (maximised) can be defined (e.g. the weight of the fin 
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array, the thermal resistance, the pressure drop etc.) obtaining, as result of the optimization 

process, the design of the fin array in term of number of fins, fin dimensions and interfin 

space.  
 

The approach no. 1 gives origin to a design method, usually iterative and, if based on the 

optimum individual fin with adiabatic tip, quite simple and diffused in the practice. Extensive 

literature exists on this optimization problem [1]. About the second approach, the literature is 

less rich and where investigators consider it, in order to obtain analytical solutions, frequently 

they introduce simplified assumptions that made difficult to have a common reference base 

for the solution of the problem.  The approach, referred in some meaningful papers [1, 6-10], 

can be quite complex but it seems to be idoneous to define solutions more convenient, 

especially in the application to advanced thermal control systems as in the case of electronic 

equipment [8].  

Considering the problem of the thermal optimization of the fin array, the role, that the fluid-

dynamic conditions on the surface has in the optimization, appears evident. The convective 

heat transfer coefficient depends on the dimensions of the interfin spacing, both in natural and 

in forced convection. A variation both of the interfin spacing and of the fin height can involve 

a variation of the heat transfer coefficient and ane optimization procedure would require 

modeling the heat transfer coefficient variation as a function of the interfin spacing. This 

makes difficult to obtain an analytical solution of the problem without simplifications. 

According to the approach no. 2, i.e. considering simultaneously the fins and the primary 

surface of the array, the purpose of this paper is to revise the problem of the optimum thermal 

design of convectively cooled arrays of longitudinal rectangular fins and to suggest a new 

point of view for the solution of the problem. The optimum design of the fin arrays is 

considered as a classical multivariable optimization problem with inequality constraints and 

the optimum solution is found by minimizing the an objective function obtained by means of 

the analysis of the thermal problem, while other possible objective functions are transformed 

in constraints of the problem. In the case proposed, the fluid-dynamic problem has been by-

passed imposing a minimum value of the interfin spacing, so that a well defined heat transfer 

coefficient on the fin faces can be maintained, varying the cross stream velocity by means of a 

fan.  

Therefore the minimum interfin spacing is considered as a preassigned parameter, like the 

heat transfer coefficients on the tip, on the fin faces and on the base surface. The fin thickness, 

the fin height, the interfin spacing and the number of fins of the array are the independent 



6 

optimization variables. In this way the problem can be solved analytically by a classical 

optimization technique: the generalized method of Lagrange multipliers. 

2. Model of the fin array 

The present analysis is limited to an array of rectangular longitudinal fins with constant 

thickness attached to a base plate surface, the primary surface. It is based on the Murray and 

Gardner assumptions provided in [11] with the exception of the insulated tip. Therefore there 

are two different heat transfer coefficients, h on the fin faces and h* on the fin tip, both 

assumed uniform and constant.  

The author have already developed a method for the optimum design of the single 

longitudinal fin based on the aforesaid model [12]; this method can be used also for the design 

of a fin arrays according to the approach no. 1 of the introduction, while the method proposed 

in the present paper can be directly related to the approach no. 2.   

For the fin array the conductive model is the same of the single fin, assuming a further 

hypothesis: the unfinned area of the array base is isothermal, with the same temperature of the 

base of the fin, and the heat transfer coefficient 'h  is uniform and constant. It has been already 

mentioned that, to consider constant the heat transfer coefficient on the fin faces and on the 

basic surface is an approximation. Actually, these coefficients depend on the velocity field in 

the gaps between the fins of the array. Three convective heat transfer coefficients h, h* and 'h  

are considered, assuming that they maintain a preassigned value if the interfin spacing is 

greater than a limit value 'c .  The idea that finned surface is subjected to uniform surface heat 

transfer coefficient is well accepted in the literature as discussed also in recent works on the 

same argument [4, 10].  

Under this hypothesis there is the idea that, for a given longitudinal development of the array, 

in case of low variations of the dimensions of the fin channels, the mean values of the heat 

transfer coefficients, mainly in forced convection, can be maintained equal to the previously 

fixed values with an opportune variation of the fluid flow velocity; this variation is of limited 

value if the interfin spacing is maintained over 5 mm. [10]. 

Fig. 2 shows the cross sectional view of the fin array. The configurations considered are two: 

the first, “open array”, is represented in Fig. 2a, the second, “closed array” in Fig. 2b.  
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a) open array
 

b) closed array  
 

Figure  2.  Schematic representation of the fin array configurations 

 

In the first case the number of fins is higher than the interfin spaces, while in the second case 

there is one interfin space more than the fins. From the “characteristic length of the fin”, 

defined as ratio between the thermal conductivity of the fin material and the heat transfer 

coefficient on the fin faces: 

h/kch =A  (1) 

some dimensionless variables, useful to the array modelization, can be introduced (Table 1). 
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Table 1. Typical characteristic length 

Material Cooling fluid k/h (m) 

Stainless steel  Water, high Re 0.002 

Polymer Air, forced convection 0.01 

Copper Water, high Re 0.0475 

Aluminum  Water, low Re 0.160 

Aluminum  Air, forced convection 1.333 

Carbon steel Air, natural convection 4.7 

 

Among these variables, those related to the array geometry are the following: 

k2
hb

2
bBi

ch
==

A
;    
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'hc
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'c'Bi
ch
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A

;    
b
L2

=ρ   (2) 

while the variables related to the convective boundary conditions are respectively: 

h/*h=ω ;   h/'h'=ω  (3) 

The weight of an array composed by a total number of fins n and the total heat flow dissipated 

–assumed positive for the case of cooled fin (T0 >Tf)– are given by 

( )⎪⎩

⎪
⎨
⎧

±+=

=

SF

F

Q1nQnQ

nWW
���   (4) 

The sign inside the brackets in the second equation of the system (4) must be assumed 

positive for the “closed” array and negative for the “open” array. FW  and FQ�  are the weight 

and the heat flow of the single fin, while SQ�  is the heat flow dissipated from the unfinned area 

on the array base, given by 

( ) f0f0S Tc'hTTc'hQ Δ⋅⋅=−⋅⋅= AA�   (5) 

The weight and the heat flow of the fin array can be given in dimensionless form as: 
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The weight of the single fin, and the dimensionless heat flow obtained by the 1-D model can 

be also expressed in dimensionless form as: 

2
2
ch

F Bi2
W

n
ρ=

γ
=

Ψ
=ψ

AA
  (7) 
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( )
( )BithBi1

BiBithBi2
Tk

Q

f0

F

ρ⋅ω+

ω+ρ
⋅=

Δ⋅
=χ
A

�
  (8) 

As a characteristic case the term χ for the infinitely long fin (ρ→ ∞), approaches to the well 

known asymptotic value (Fig. 3) 

Bi2max ⋅=χ   (9) 

 

χ

ρ

2ωBi

2 Bi

 
Figure 3. Dimensionless heat flow trend for a given value of the Biot number for a defined value of ω. 

 

As indicative parameter of the fin array performance, the difference between the total heat 

flow exchanged by the array and the heat flow exchanged by the bare surface (basic surface 

without fins) operating under the same boundary conditions can be introduced in 

dimensionless form as: 

f0

f0

Tk
TH'hQ

Δ⋅
Δ⋅−

=Φ
A
A�

 (10) 

referred from here as “heat transfer enhancement factor” of the fin array. The parameter Φ 

can be expressed as a function of some of the previously defined dimensionless quantities 

( )'c/H'Bi'2X ω−=Φ   (11) 

The “heat transfer enhancement factor” relative to the single fin is  

nΦ=ϕ   (12) 

that can be also expressed in the form 

Bi'2ω−χ=ϕ   (13) 
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3. Optimum design problem: main elements 

The optimum design problem requires the definition of an objective function, of the thermal 

and fluiddynamic model of the fin array, of the constraints and of the true variables of the 

problem. The objective is to minimize the weight of the fin array for a given heat flow or to 

maximize the heat flow for a given weight of the array.  The conductive model of the fin array 

contains a lot of quantities that must be considered as preassigned parameters: the geometrical 

dimensions H, A , 'c , the physical properties of the materials γ and k, the convective heat 

transfer coefficients h, h* and 'h , and the temperatures of the primary surface T0 and of the 

fluid Tf .  

The true design variables for the problem are the number n of fins of the array, the fin 

thickness b and the fin heigth L.  The objective functions are the weight W, if the heat flow Q�  

is assigned, or the heat flow if the weight is given. The optimum design problem is a typical 

constrained optimization problem. Further constraints, that will be discussed in the next 

paragraphs, have to be joined to the equality constraint given by assigning the heat flow or the 

weight.  

3.1. Constraint on the maximum number of fins  

When the geometrical dimensions of the base surface are given, the number of fins of the 

array is an integer value with a minimum equaling 1 for the closed array or 2 for the open 

array and a maximum consistent with the minimum permissible interfin space, 'c . Really, the 

maximum number of fins of the array has to be lower than the real number n   

⎟
⎠
⎞

⎜
⎝
⎛ ±= 1

'c
Hn   (14a) 

with positive sign for the “open array” and negative for the “closed array”, so that yields 

( ) n1'c/Hintn nax ≤±=        (14b) 

3.2. Constraint defined by the convenience criterion of the fin array 

In the literature the “fin convenience criterion” means the condition for which the finned 

surface has advantages over the primary surface, considered by thermal or economical point 

of view. As regards to the thermal point of view, there are different ways to establish that 

condition: resorting to fin effectiveness [1, 13], or removal number [3, 14] is usually 
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suggested. In this work the heat transfer enhancement factor (augmentation factor) of the fin 

array, Φ, defined by Eqs. (10) and (11) is preferred. In particular, it is proposed that the 

evaluation of the thermal convenience be based both on the condition of positive fin array 

enhancement factor and also on the analysis of its first derivative with respect to the fin 

height; according to the idea that the fin has advantages over the primary surface as long as 

the heat flow increases with the increase of the fin height [13, 15]. 

Taking into account the definition of the fin array enhancement factors defined by Eqs. (10)-

(13), it is easy to show that the thermal convenience criterion, if the 1-D model holds, 

involves only the single fin enhancement factor; requiring that: 

 0      and      0Bi'2 >
ρ∂
ϕ∂

>ω−χ=ϕ  (15) 

Imposing the condition on the derivative, i.e. that χ be an increasing function of ρ, it results 

that, as shown in [12]: 

0Bi1 2 ≥⋅ω−    (16) 

on the other hand, it is not difficult to demonstrate that  

  )(1Bi       if
)(1Bi      if

        0 2ω′≤⇒ω′<ω
ω′⋅ω≤⇒ω′≥ω

⇒≥ϕ   (17) 

Therefore, joining the conditions defined by Eqs. (16) and (17), the thermal convenience 

criterion, can be summarized as follows 

  
ˆ
1Bi

2ω
≤   (18a) 

with 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤→≤

≤→≥
⇔

ω≤ωω=ω
ω≥ωω=ω

   
)'h(

kh2b   'h*h  

  
*)h(
kh2b   'h*h  

  '   if    'ˆ
 '   if    ˆ

2

2
 (18b) 

It must be remarked that, assuming equal the heat transfer coefficients h, h* and 'h  at the fin 

faces, at the fin tip and at the primary surface in the gap between the fins, respectively, no 

difference occurs between the usual condition that the effectiveness be greater than one, or 

that the criterion defined by Eq. (18a) be satisfied.  Moreover, in case of validity of the 1-D 

model, the aforesaid criterion (18) is completely consistent with each physically meaningful 
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situation 1 h* h ' h′ω ≠ ω ≠ ⇔ ≠ ≠  and, in particular, with ω = 0, i.e. for fins with adiabatic 

tip. 

3.3 Constraint defined by the accuracy of the 1-D conduction 
approximation  

About the application of the 1-D model, for a longitudinal fin with constant thickness it is 

correct for Biot numbers much less than unity, 1Bi <<  [3]. A more specific condition results 

from the “accuracy criterion” [12], based on the evaluation of the accuracy of the results 

obtained with the 1-D fin heat conduction model [16-18].  As accuracy criterion the following 

inequality can be assumed: 

h/k2b         Bi m              m ≤⇔≤   (19) 

As example, the accuracy is within the 1% if Bi < 0.04 [12]. So the Biot number, i.e. the fin 

thickness, is bounded both by the limit values defined by the aforesaid fin thermal 

convenience criterion and by the accuracy criterion. Obviously, it is necessary that the two 

conditions be both satisfied. It is not difficult to check that, for the longitudinal fin array, in 

many engineering situations the accuracy criterion is more restrictive than the convenience 

criterion. 

3.4. Constraint defined by the geometry 

For each array composed by a number n of rectangular plate fins, it is possible to determine 

the maximum fin thickness compatible with the constraint of the minimum interfin spacing 

between two contiguous fins. If b is the fin thickness and n the number of fins, it is necessary 

that  

'c
1n
nbHc ≥

±
−

=   (20) 

so that it results that the maximum permissible thickness is 

( )
n

'c1nHbmax
⋅±−

=   (21a) 

where the positive (negative) sign is valid in the case of closed (open) array. In both the cases, 

the satisfaction of the constraint on the interfin spacing can be turned in dimensionless term in 

a limitation of the Biot number. So that it yields 
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n
nn'BiBi g

−
=≤ m   (21b) 

that furnishes a bound similar to the one given by the convenience criterion and by the 

accuracy criterion, discussed in the previous sections. 

3.5 Maximum heat flow of the fin array consistent with the 1-D 
model 

An important element of the fin array design is the knowledge of the upper limit heat flow 

that can be dissipated with reference to a required heat exchange surface dimension. The 

maximum value of the heat flow, consistent with the one-dimensional model of the fin array, 

can be obtained by analyzing the array heat transfer enhancement Φ as function of the number 

of fins n, considered as a real continuous variable. Introducing in the Eq. (9) the Biot numbers 

defined by the accuracy constraint, m, or by the geometrical constraint, mg, the array heat 

transfer enhancement is bounded as follows 

[ ]mm '22n)n(m ω−⋅=Φ≤Φ   for 0nn1 ≤≤   (22) 

( ) ( ) ( )[ ]nn'Bi'nnn'Bi2ng −ω−−⋅=Φ≤Φ   for nnn 0 ≤≤         (23) 

where the bounding quantities are coincident at n=n0. Because )n(mΦ  increases with n, in the 

range where the accuracy constraint is more restrictive than the geometrical one it results 

[ ] [ ] '22n)n()n(sup 00mm mm ω−⋅=Φ=Φ  for 0nn ≤  (24) 

On the contrary, the function )n(gΦ  shows a maximum value; the condition 0n/g =∂Φ∂  gives 

that it occurs at 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ω+

ω
+⋅=

'Bi'1
'Bi'1n

2
1*n

2

2
     (25) 

so that 

[ ] ( )
[ ] ( )⎪⎩

⎪
⎨
⎧

<≤Φ=Φ⇒≥

<≤Φ=Φ⇒<

nnnforn)n(sup*nnif

nn*nfor*n)n(sup*nnif

00gg0

gg0  (26) 

By means of Eqs. (6) and (11) the aforesaid values can be turned to dimensional heat flow 

( )
⎭
⎬
⎫

⎩
⎨
⎧ ω⎥⎦

⎤
⎢⎣
⎡ ω+ω+⋅⋅Δ= 'Bi'2'Bi''Bi'1'BinTk*)n(Q 2

f0 ∓A�   (27) 
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[ ]{ }'Bi'2'Bi'n2Tk)n(Q 0f00 ωω+⋅⋅Δ= ∓A� m   (28) 

where the sign in upper position is for open array and in lower position for closed array.  

Really, taking into account that the fin number is an integer, and defining the integers 

( )
( )

( )
( )⎩

⎨
⎧

+=
=

⎩
⎨
⎧

+=
=

1*nint*n~
*nint*n̂

           
1nintn~

nintn̂

00

00    (29) 

then it results 

( ) ( )

( ) ( )

( ) ( )

max 0f g g

max 0f m g

max 0f m 0 g 0

H ˆˆQ k T sup n * , n * 2 'Bi ' Q(n*)
c '

H ˆˆQ k T sup n * , n * 2 'Bi ' Q(n*)
c '

HˆQ k T sup n , n 2 'Bi ' Q(n
c '

0

0

for n n*

for  n* n n*

⎧ ⎫⎛ ⎞⎡ ⎤= Δ Φ Φ + ω ≤ <⎨ ⎬⎜ ⎟⎣ ⎦ ⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞⎡ ⎤= Δ Φ Φ + ω ≤ < <⎨ ⎬⎜ ⎟⎣ ⎦ ⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞⎡ ⎤= Δ Φ Φ + ω ≤⎨ ⎬⎜ ⎟⎣ ⎦ ⎝ ⎠⎩ ⎭

� ��A

� ��A

� ��A 0 ) n *0for n

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪

≥⎪
⎩

     (30) 

However a sufficient estimation of maxQ�  can be given by  

*)n(Q�   if n0 < n*  (31) 

)n(Q 0
�   if n0 ≥ n*  (32) 

furthermore after some algebraic calculations, it results that 

n0< n*    ⇔   
2

22 'Bi''Bi'1'Bim ⎥⎦
⎤

⎢⎣
⎡ ω−ω+>   (33) 

3.6 Final remarks about the constraints 

Some useful considerations about the constraints and their implications can be remarked. 

First, starting from the assumption that the convenience criterion be satisfied, it is important 

to determine the condition for which the geometrical constraint is more restrictive than the 

accuracy one, resulting: 

'Bi/1
nnn 0g m

mm
+

=≥⇔≤   (34) 

Second, as consequence of the constraints, there is a limit to the array heat transfer 

enhancement factor, i.e. to the heat flow, consistent with the 1-D model of the fin array.  
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The dimensionless heat flow of the 1-D fin has a maximum depending on the square root of 

the Biot number, as given by Eq. (9), while the Biot number is limited by the constraint too.  

Therefore it is possible to show that, for the validity of the 1-D model of the fin array, the heat 

flow is required to be lower than a maximum value, and such maximum bounded as follows 

for 0n < n*     →     ( )*nQQ max
�� ≤        

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ω⎥⎦

⎤
⎢⎣
⎡ ω+ω+⋅Δ⋅= 'Bi'2'Bi''Bi'1'BinTk*nQ 2

f0 ∓A�  (35a) 

for 0n ≥ n*     →    ( )0max nQQ �� ≤         

( ) [ ]{ }'Bi'2'Bi'n2TknQ 0f00 ωω+Δ⋅= ∓A� m   (35b) 

where the sign in upper position is for the “open array” and in lower position for the “closed 

array” and  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ω+

ω
+⋅=

'Bi'1
'Bi'1n

2
1*n 2

2
  (36) 

After these remarks, let now examine a suitable approach to perform the optimum design of a 

fin array, giving the guidelines for the solution of the general case ( 0'≠ω  and 0≠ω ) and an 

analytical solution for the particularly meaningful case of fin with insulated tip ( 0'≠ω  and 

0=ω ).  

4. Fin array optimum design: statement of the problem 

The problem of the optimization of the fin array, contains the number of fins as integer 

variable.  In order to achieve the optimization with respect to the number of fins, the most 

direct method involves the comparison among optimum fin arrays obtained for different 

values of the number of fins.  In this perspective the optimization method proposed in the 

paper starts selecting some number of fins, lower than the maximum defined by Eq. (14), to 

be investigated.  For every selected number of fins n, the array is optimized imposing the 

constraint on the heat flow (if the minimization of the weight is considered) or on the weight 

(if the maximization of the heat flow is considered). The solution of the optimum design is 

obtained comparing the results relative to different values of the number of fins n. In this way 

the problem is reduced to the optimum design of fin array composed with an assigned number 

of fins. Among the dimensionless quantities, n, Bi ',H / c ', , 'ω ω  are preassigned parameters, 
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while Bi and ρ  are the design variables. The role of objective function or of equality 

constraint is played alternatively by the dimensionless weight of the array Ψ and by the array 

enhancement factor Φ -quantity that differs only for a constant by the dimensionless heat 

flow-, both divided for the number of fins. The further constraints are given by the 

convenience criterion and by the more restrictive between the accuracy and the geometrical 

constraint. Moreover all the design variables must be non negative.   

The thermal optimization of the fin array can be expressed in the classical form  

Minimize  [ψ (ρ,Bi)]   

subject to ϕ  (ρ,Bi) - 0ϕ  = 0  (37a) 

or, alternatively 

Maximize  [ ϕ  (ρ,Bi)]   

subject to ψ (ρ,Bi) − ψ0= 0  (37b) 

both satisfying the further constraints: 

ρ ≥ 0;    (38a) 

Bi > 0;    (38b) 

Bi ≤  mg (or m);  (38c) 

0Biˆ1 2 ≥⋅ω−    (38d) 

The problem can be solved by a non-linear programming method [19-20].  

4.1 Minimization of the weight of the fin array for a given heat flow. 
General problem 

In the design of fin arrays it is often desirable that the required thermal load be dissipated with 

the minimum weight. The problem defined by Eqs. (37) and (38) is a non-linear programming 

problem that can be approached converting inequality into equality constraints, defining a 

number of auxiliary variables βj equal to the number of inequality constraints and solved by a 

generalized Lagrange multipliers method. The problem of maximization of the heat flow for a 

given weight defined by Eqs (37b) and (38) can be solved, defining the function 
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2 2 2 2 2
0 2 2 3 3 4 4 5 5ˆ2 Bi Bi 1 Bi2

1L = Bi  +  ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ρ λ ϕ − ϕ + λ ρ − β + λ − β + λ − − β + λ − ω − β⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦gm    (39) 

and solving the system obtained equaling to zero the derivatives of L with respect to ρ and Bi, 

to five multipliers λi and four auxiliary variables βi, being 5 the number of constraints, one 

equality constraint and four inequality constraints: 
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 (40) 

A complete analysis of the system involves the consideration of 16 different cases, but the 

only meaningful are those in which ρ≠0,  Bi≠0. So it follows that 

00;0 32
2

3
2

2 =λ=λ⇒≠β≠β  

Only the cases 02
4 ≥β  and 02

5 ≥β  have to be examined. Four different cases require a 

discussion.  

Case 1 

0Bi0 44 =λ→<→>β gm  

0ˆ/1Bi0 5
2

5 =λ→ω<→>β  
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  (41) 

After some algebraic passages, from the second equation, the system (41) has a solution 

obtained by solving the trascendental equation 

( ) ( )
( )

( ) ( )2

Bi th Bi Bi3 Bith Bi 1 2 Bi 2 ' Bi 1 Bith Bi 0
cosh Bi 1 Bi th Bi

⎡ ⎤⎡ ⎤⎡ ⎤ ω ⋅ ρ + ωρ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎡ ⎤ρ − ⋅ − + ω − ω ⋅ + ω ρ =⎢ ⎥ ⎣ ⎦⎢ ⎥ρ + ω ⋅ ρ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 (42) 

Cases 2 and 3 

0or0Bi0 444 ≠λ=λ→≤→≥β gm 0ˆ/1Bi0 5
2

5 ≠λ→ω=→=β  

In the case ω=ω̂  it follows, from the first equation of system (40), that Bi=0, so that no 

solution is available.  If 'ˆ ω=ω , replacing 2'/1Bi ω=  in the third equation of the system (40), no 

solution consistent with 00 >ϕ  exists.  

Case 4 

0or0Bi0 444 ≠λ=λ→=→=β gm 0ˆ/1Bi0 5
2

5 =λ→ω<→≠β  

If 04 =λ  a system of four equations in three unknowns Bi, ρ, λ1 and the solution is possible 

with Bi=mg only for particular combination of the parameters ω, 'ω , Bi ' , 0ϕ  
 

If 04 ≠λ  a system of four equations in three unknowns Bi, ρ, λ1 and λ4, and the solution is a 

boundary one Bi=mg 
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5. Fin array optimum design. Case of the fin with adiabatic 

tip (ω=0) 

The proposed modelling and optimization technique is general and the solution of the 

optimum design problem corresponds to the solution of a system of non-linear equations as 

described in the previous case. A suitably simple case, meaningful in a lot of practical 

applications, including the fuel cell stacks, is the fin array with thermally insulated tip (h*=0 

and ω=0), for which the problem of the optimum design of the fin array with a given number 

of fins can be solved analytically. Resorting to the generalized Lagrange multipliers method, 

the solving equation (42), becomes 

( ) ( ) 0Bi'2
Bicosh

Bi3Bith
2

=ω−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ρ

ρ
−ρ   (43) 

Eq. (43) have to be joined with the constraints represented by Eqs. (18), (19) and (21b), and 

by Eqs. (7) or (13) if the constraint is represented by assigning the weight or the heat flow, 

respectively.  It is important to note that the equation reported in [5] to solve the analogous 

problem, applying the nomenclature of this paper, is coincident with Eq. (43). For the aim of 

simplifying the analysis the following auxiliary variables can be introduced 

⎪⎩

⎪
⎨
⎧

ω=

ρ=

Bi'v

Biu      (44) 

So that the two dimensionless quantities, similar to those introduced with Eqs (7) and (13) can 

be defined 

33 vu2'Y ⋅=ψω=    (45a) 

[ ]vthuv2'Z −⋅=ϕ⋅ω=     (45b) 

By means of the variables introduced in Eq. (44) the solving equation of the optimum design 

problem, expressed by Eq. (43) for the fin array with a given number of fins n becomes 

simply: 

( ) 2/ucosh/u3thuv 2−=    (46) 

For what concerns the constraints, they become upper limitations on the auxiliary variable v 

1v ≤      fin array thermal convenience criterion  (47a) 
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mvv ≤   accuracy criterion constraint    (47b) 

gvv ≤    geometrical constraint    (47c) 

while according to the definition of the weight W0 or of the heat flow 0Q� , for a given number 

of fins, according to the selected optimum design problem, a further constraint is the one 

corresponding to the definition of weight or heat flow: 

0
3

0
0

02
ch

0
0 '

n
W

ψω=Υ→
Ψ

=ψ→
γ

=Ψ
AA

    (48) 

00
0

0
f0

f00
0 'Z

nTk
TH'hQ

ϕω=→
Φ

=ϕ→
Δ⋅

Δ⋅−
=Φ

A
A�

   (49) 

In conclusion, from the system between Eq. (46) and Eq. (45a) with Y=Y0, or Eq. (45b) with 

Z=Z0, a couple u*, v* can be obtained. This couple defines an optimum point if, and only if, 

the inequality constraint more restrictive of the (47) is satisfied.  If v* does not satisfy the 

aforesaid constraint, its value is assumed equal to that identified by the more restrictive of the 

conditions (47), e.g. v*=vg. Then, imposing Y0 or Z0, as required by the selected optimum 

design problem, the value u*(vg) is obtained as solution of one of the two Eqs. (45).  For the 

assigned number of fins n, the couple (u*, v*), if it exists, provides the minimum weight of 

the fin array as 

3
opt

ch '

n
W

ω

Υ
γ= AA       (50) 

and the corresponding heat flow 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ω+

ω
⋅Δ⋅=

'c
H'Bi'2

'
nZ

TkQ opt
f0A�     (51) 

To better explain the procedure and to understand the difference between the problems of the 

minimization of the weight and that of the maximization of the heat flow, a separate analysis 

of the two cases is necessary.  

5.1. Fin array of minimum weight at a given heat flow 

The existence of a solution for this particular problem is strictly dependent on the value of the 

heat flow that must be dissipated by the fin array.  The maximum heat flow, maxQ� , exchanged 

by the fin array with the assigned minimum interfin space, c ' , can be calculated according to 
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Eqs. (27) and (28). The optimization problem of minimum weight array has a solution only if 

the assigned heat flow is lower than maxQ� . Considering the limitation on the heat flow, it is 

possible to find the range of the number of fins within that the comparison among optimum 

fin arrays have to be carried out.  In particular, it can be shown that the number of fins n is an 

integer number contained, according to the assigned heat flow, in the following range: 

[ ]
'Bi'1

n'Bi
1

n
'2

1'Bi'2
n

'
1

2
nn,n

2

2
0020

ω+

⎥
⎥
⎦

⎤

⎢
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⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ
+

Φω
−±ω+

Φω
+

⋅=+−   (52) 

where the upper value n+ is always lower than n .  

Basing on the previous assumptions, to solve the optimum design problem of the longitudinal 

rectangular fin array with adiabatic tip, the procedure for the search of the minimum weight 

for a given heat flow is the following (Figure 4): 

 

1) if the assigned thermal flow 0Q�  is lower than maxQ�  given by Eqs. (27) and (28), the array 

heat transfer enhancement factor Φ0 can be calculated with Eq. (10); by means of Eq. (52) the 

range of analysis is defined and, as first calculation value for the number of fins, the integer 

part of n+ is assumed; 

2) for the given n, the heat transfer enhancement factor of the single fin 0ϕ  and the 

corresponding Z0 are calculated with Eq. (49), then solving the system of Eqs. (45b) and (46) 

the couple u0, v0 is determined; 

3) the value v0≤1 is compared with the values vm and vg imposed by the one-dimensional 

criterion (47b) and by the geometrical constraint (47c), the minimum between the compared 

values is assumed as solution v*; 

4) if v*= v0 then u*= u0, otherwise, if v*=vm or v*= vg, then u* can be obtained as solution of 

Eq. (45b) with v=vm or v=vg and 0ZZ = ; 

5) from the couple u*,v* it is possible to determine by Eq. (45a) the corresponding Y and 

then, by means of Eq. (50), the correspondent weight of the array W; 

6) a value of n lower than the previous one is assumed and the steps 2)-6) are repeated; 

7) the weights obtained for different values of the fin number are compared; the fin number 

for which the absolute minimum weight is obtained, furnishes the couple uopt, vopt that is the 

solution of the optimum design problem. 
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From the optimized couple uopt, vopt, the corresponding Bi and ρ and consequently the fin 

thickness b, the fin length L and the interfin space c are deduced. 

 

Q < Qmax

n = nmax

calculation of  Z0

calculation of  u* v*
with solving equation

Y e W

v*>vgv*< vg

Y e W
v=vg or v=vm

Heat flow

n = n-1

min W

no
No solution

si
Q

no

yes

 
Figure 4. Procedure for the minimization of the weight at given heat flow 

5.2. Fin array with maximum heat flow for a given weight 

Differently with respect to the case of minimum weight examined in the previous paragraph, 

the existence of the solution is assured for each assigned positive value of the weight.  The 

optimization procedure is as follows (Figure 5): 
 

1) From the assigned weight W0, the dimensionless weight Ψ0 of the fin array is calculated, 

and the fin number nmax given by Eq. (14b) is assumed; 

2) the dimensionless weight of the single fin ψ and the corresponding Y0 are calculated, then 

by solving the system of Eq. (46) and Eq. (45a), with Y=Y0, the couple u0, v0 is determined; 

3) the value v0≤1 is compared with the value vm imposed by the 1-D constraint (47b) and vg 

imposed by the geometrical constraint (47c), then as solution v*, the minimum among the 

compared values is assumed; 

4) if v*= v0 then u*= u0, otherwise, if v*= vg, or v*=vm, then v* is inserted inside Eq. (47a) 

with Y=Y0 and u* can be obtained as solution; 
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5) from the couple u*,v* it is possible to calculate by Eq. (47b) the corresponding Z and by 

Eq. (51) the heat flow Q�  of the array; 

6) a value of n lower than the previous one is assumed and the steps 2)-6) are repeated; 

7) the heat flows obtained for different values of the fin number are compared; the fin number 

for which the absolute maximum heat flow is obtained, furnishes the couple uopt, vopt that is 

the solution of the optimum design problem. 
 

From the optimized couple uopt, vopt , the correspondent Bi and ρ and consequently the fin 

thickness b, the fin length L and the interfin space c, yielding the maximum heat transfer 

capability are deduced. 

 

n = nmax

calculation of  Y0

calculation of u*,v*
with solving equation

v*>vg o vmv*< vg o vm

Heat flow
Q

v=vg or v=vm

Heat flow

n = n-1

max Q

W

 
Figure 5. Procedure for the maximization of the heat flow at a given weight 

6. Examples of application of the proposed procedure and 
comparison with different methods 

In this section a series of examples of the application of the optimum design procedure 

previously exposed are discussed and analyzed. They concern the fin array with adiabatic tip. 

All the tables ad figures provide dimensional results referred to a reference test-case, but the 

same results could be available in dimensionless form. Before furnishing results obtained 
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from the present analysis, it is required to validate the method with reference to some existing 

data. In particular the first application is carried out with reference to the data of a test case 

extracted from [7] with the aim of validating the method in comparison with one of those 

proposed in the literature. The problem is to minimize the weight of a “cold-plate”, i.e. an 

array of rectangular fins for a fixed base area, with the following characteristics, for a required 

heat flow: 

 

H = 196 mm   

A= 150 mm     

h = 'h  = 80 W/m2K     

k = 100 W/m K     

ΔT0f = T0-Tf = 50 °C 

 γ = 2700 kg/m3 

Q� = 470 W 

 

Table 1 provides the results obtained for the cases of “open” and “closed” array with the 

proposed solution method, for the test case with 'c =15 mm and assuming as accuracy 

criterion Bi ≤ m = 0.04, more restrictive than the convenience one (Bi ≤ 1).  For this particular 

value the condition of Eq. (34) is satisfied with n ≥ 2 > n0 both for open and closed array. 

Moreover, for both the arrays it is n*>n0, therefore the solution of the minimum weight 

problem is possible if the assigned heat flow is lower than the maximum defined by Eqs. 

(35a); really it is: 

 closed array n ≤ =maxn 12           Q�  < ( ) =*nQ� 766.41 W 

 open array    n ≤ =maxn 14            Q�  < ( ) =*nQ� 873.95 W 

It this case, the geometrical constraint prevails on the accuracy criterion, so that only the first 

one has effect on the optimization process. Among the various results, Table 1 provides also, 

for each examined case, the value of the “fin effectiveness” [1] of the single fin of the array, 

also mentioned as “fin removal number” [14]. This quantity is defined as the ratio of the heat 

transferred into the base of the fin to the heat transferred through the same primary surface 

area if the fins were not present, and it is given by 

 ( ) Bi'2TTb'h
Q

f0

F
sf ω

χ
=

−
=ε

A

�
   (53) 
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To have a comparison, the results obtained in [7] by means of the computer code are sensibly 

different because the optimization result obtained in [7] was: 

n=12  b=1.21 mm  L=40 mm           W=234.8 g 

As can be verified from the Table 2, the minimum weight is obtained for the maximum 

number of fins for which the given given heat dissipation capability can be obtained:   

for “open” array n=13 b=1.06 mm L=37.5 mm   W=210.1 g 

for “closed” array  n=11 b=1.45 mm L=46.0 mm  W=298.0 g 

 

Table 2. Results of the optimization for the test case with Q� =470 W for different number of fins ( 'c =15 mm) 

              Open array     Closed array 
 

n b [mm] L [mm] c [mm] W [g] εsf b [mm] L [mm] c [mm] W [g] εsf 

13 1.06 37.50 15.18 210.1 41.46      

12 1.25 40.77 16.45 248.0 38.12      

11 1.49 44.67 17.96 297.3 34.73 1.45 45.98 15 297.9 35.69 

10 1.81 49.37 19.76 362.8 31.37 1.81 49.37 16.17 362.8 31.37 

9 2.25 55.19 21.96 452.8 27.99 2.25 55.19 17.57 452.8 27.99 
 

 

Moreover, it may be noted a significant difference between the absolute optimum of the 

“open” array and that of the “closed” array (about 88 g) and the sensible decrease of the 

weight (more than the 10%) respect to the optimization result proposed in [7] is also 

remarkable.  Then it can be observed how in case of “closed” array, the array is optimized on 

the boundary, i.e. at the limit of the geometrical criterion, so that the interfin space is equal to 

the minimum permissible value c ' 15=  mm. Moreover, it can be also verified that, in both the 

cases, the resulting number of fins is equal to the integer part of the upper limit n+ of the range 

defined by Eq. (52). 

6.1. Influence of the variation of the thermal heat flow 

 It is of primary interest to examine the influence of the heat flow increase on the 

optimization result. So Table 3 provides the results obtained with reference to the same data 

of the previous example, if the heat flow increases, i.e. when Q� =700 W, value always lower 

than the maximum defined by Eqs (35), both for the “closed” and for the “open” array. 

Examining the results of Table 3, it may be seen how an increase of the heat flow of about the 
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50% determines a significant increase of the minimum weight of a factor 7 and 10 (for open 

and closed array, respectively).  

 

Table 3.  Results of the optimization for the test case with Q�  = 700 W with different number of fins  

( 'c =15 mm) 

Open array (3 ≤ n ≤ 12)      Closed array (3 ≤ n ≤ 9) 
 

n b [mm] L [mm] c [mm] W [g] εsf b [mm] L [mm] c [mm] W [g] εsf 

11 4.18 76.34 15 1422.2 20.10      

10 5.10 84.59 16.11 1747.0 18.03      

9 6.35 94.97 17.35 2196.6 15.75 5.11 226.05 15 4221.4 20.10 

8 8.12 108.26 18.72 2847.5 13.94 7.62 116.60 15 2880.6 14.91 

7 10.75 125.88 20.12 3836.5 11.90 10.86 124.68 15 3837.7 11.77 

6 14.91 150.36 21.31 5449.5 9.84 14.91 150.36 15.21 5449.5 9.85 

 

6.2. Influence of the minimum interfin spacing variation 

For the examined cold-plate let reduce the minimum permissible interfin spacing c '  till to the 

value of 5 mm, instead of the previous c ' = 15 mm, maintaining the same heat transfer 

coefficient by an opportune variation of the fluid flow velocity. 

In this case the maximum number of fins given by Eq. (14) is nmax=38 for the “closed” array 

and nmax=40 for the “open” array, while the values of the limit heat flow given by Eq. (35a) 

are Q(n*)� =1342.85 W and ( )Q n *� =1407.00 W, for closed and open array respectively. The 

results obtained with the procedure developed in the paper are illustrated in Table 4, where in 

the headers the range of variation for the number of fins determined by Eq. (52) are contained. 

Increasing the heat flow starting from the value Q� =700 W till to values in the proximity of 

the maximum defined by Eqs. (35a) and (35b), the results of Table 5 can be obtained. From 

Table 5 it can be seen that, increasing the heat flow, the solution of the optimum design 

problem, is obtained with a lower number of fins, while the weight increase in a sensible way. 

These results are concisely summarized in the Figs. 6 and 7 where the optimum fin number 

and the corresponding minimum weight are reported as a function of 'c  for an assigned heat 

flow. In all the cases analyzed the assumption of a constant value of the heat transfer 

coefficient is reasonable because all the optimization results corresponds to a value of the 

interfin spacing equal to about the lower bound value. Moreover, it seems particularly 

interesting to show the effect of the minimum available interfin spacing 'c  on the value of the 
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heat flow ( )Q n *�  determined by Eq. (35a). Figure 8 and Table 6 provide the trend and the 

detailed values of the upper bound of the maximum heat flow available for the fin array 

( )Q n *�  in dependence of the minimum interfin spacing 'c  respectively.  

 

Table 4.  Results of the optimization for a given heat flow Q�  = 700 W  with different fins ( 'c =5 mm) 
 

               Open array (3 ≤ n ≤ 38)   Closed array (3 ≤ n ≤ 36) 
 

N b [mm] L [mm] c [mm] W [g] εsf b [mm] L [mm] c [mm] W [g] εsf 

38 0.29 26.22 5 116.8 87.39      

37 0.35 21.41 5.08 113.6 73.10      

36 0.37 22.02 5.21 120.1 71.09 0.31 34.57 5 153.9 87.11 

35 0.40 22.66 5.35 127.2 69.03 0.40 22.66 5.06 127.2 69.03 

34 0.42 23.35 5.50 135.0 66.97 0.42 23.35 5.19 135.0 66.97 

33 0.45 24.07 5.67 143.5 64.95 0.45 24.07 5.33 143.5 64.95 

 

Table 5.  Results of the fin arrays optimization for different values of the imposed heat flow Q�  ( 'c =5 mm) 

Open array     Closed array 
 

Q� [W] nopt b [mm] L [mm] c [mm] W [gr] nopt b [mm] L [mm] c [mm] W [g] 

700 37 0.35 21.41 5.08 113.6 35 0.40 22.66 5.06 127.2 

800 37 0.43 29.79 5 193.0 34 0.58 27.48 5.04 218.9 

900 35 0.72 30.71 5.02 313.1 33 0.79 33.65 5 354.4 

1000 34 0.91 38.75 5 386.5 32 0.97 46.01 5 577.6 

1100 32 1.28 46.25 5 768.1 30 1.37 55.82 5 927.0 

1200 30 1.70 59.21 5 1222.9 27 2.07 68.59 5 1555.7 

1300 27 2.44 78.68 5 2103.1 23 3.30 103.35 5 3181.1 
 

 

Table 6.  Comparison between the maximum available heat flows as a function of the minimum permissible 

interfin space ( 'ω = 1) 

'c  [mm] *)n(Q�  [W] closed array *)n(Q�  [W] open array 

1 2984.69 3014.09 
2 2117.90 2159.15 
3 1732.13 1782.32 
5 1342.85 1407.00 
8 1059.81 1140.00 

10 945.84 1034.90 
12 861.05 958.02 
15 766.41 873.95 
18 695.78 812.72 
20 657.48 780.18 
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Figure 6.  Optimum number of fins as a function of the minimum interfin space. Difference between “open” (♦) 

and “closed” (■) array ( Q� = 700 W) 
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Figure 7.  Minimum weigth of the fin array as a function of the minimum interfin space. Difference between 

“open” (♦) and “closed” (■) array ( Q� = 700 W) 

 

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17 19
c' [mm]

 Q (n*) [W]

 

Figure 8. Comparison between the maximum available heat flows for the two cases of open (dotted line) and 

closed (continuous line) array as a function of the minimum interfin spacing  ( 'ω =1) 
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6.3. Influence of the reduction of the heat transfer coefficient on the 
bottom base 

As final application, it is interesting to show the effect on the result of the optimum design 

determined by a reduction of the heat transfer coefficient on the primary surface, i.e. of the 

dimensionless parameter 'ω .  

With reference to the same general data used to obtain the results of the Table 5, if instead of 

'ω =1, the value 'ω = 0.6, deduced from the experimental data of [21], is considered, all the 

aforementioned consideration about the constraints are still valid and the results of Table 7 

can be obtained.  In this case the solution of the optimum design problem is possible only for 

heat flow lower than ( )Q n *� =1317.91 W for “closed” array and lower than ( )Q n *� =1383.21 

W for “open” array. Comparing the results of Tables 4 and 6 the effect of the reduction of the 

heat transfer coefficient on the primary surface in the gap between the fins, is a sensible 

increase of the weight.  

 
Table 7.  Optimized fin arrays for a reduced heat transfer coefficient ( 'ω =0.6) on the primary surface  for 

different values of the imposed heat flow Q�  ( 'c =5 mm) 

                     Open array        Closed array 
Q� [W] nopt b [mm] L [mm] c [mm] W [g] nopt b [mm] L [mm] c [mm] W [g] 

700 37 0.41 22.95 5.02 141.3 35 0.46 24.43 5 158.3 

800 36 0.58 27.47 5 233.7 34 0.62 31.14 5 264.9 

900 35 0.74 35.24 5 371.1 32 0.96 35.25 5.01 438.4 

1000 33 1.09 40.10 5 584.6 31 1.16 46.90 5 683.8 

1100 31 1.48 49.06 5 914.0 29 1.59 59.24 5 1103.7 

1200 29 1.93 63.96 5 1450.6 26 2.35 76.42 5 1888.0 

1300 26 2.73 89.16 5 2563.9 22 4.14 88.51 5 4546.5 
 

 

6.4. Discussion and comparison with other methods 

The optimum design of arrays of longitudinal fins with constant thickness, considering 

different mean heat transfer coefficients on the fi n faces and tip, can be recasted to a 

nonlinear constrained minimization (maximization) problem, that can be solved by means of 

an analytical procedure easily implemented on computer for solution directly or by means of a 

support software with a Non Linear Programming package (like the “mincon” function of 

Matlab Optimization Toolbox).  
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Concerning the comparison with other optimization methods available in the literature, in 

addition to some quantitative differences with the other methods as discussed in section 6, the 

method developed in this paper shows that the use of the removal number for the evaluation 

of the solution, proposed by some authors in the literature, have to be carefully considered.  

Really the extension of the concept of the effectiveness or removal number of the single fin –

εsf defined by Eq. (53)- as “qualification parameter” for the fin arrays is ambiguous. 

Considering the results of Tables 2 and 3 it seems that for a given heat flow the solution of the 

minimum weight optimization problem is the one that corresponds to the higher value of the 

removal number. But considering the results of Table 4 it is possible to observe how, in both 

the cases, the optimized solution, obtained for a number of fins of the array of 37 for the 

“closed” array and 35 for the “open” array, does not correspond to the higher value of the 

removal number of the single fin. This example definitively clarifies the difference between 

the approach no. 1 that use the classic results of the single fin optimization based on the 

application of the results available in the classical literature about the extended surfaces as [3] 

(summarized in Figure 9) and the approach no. 2 described in the introduction for the thermal 

optimization of fin arrays and object of the work exposed in the present paper. 
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Figure 9. Procedure for the optimization based on the classical results of single fin optimization 
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7. Conclusions 

In this paper a method for the optimization of convective fin arrays composed by longitudinal 

fins of rectangular profile is proposed. The method developed reduces the multiobective 

optimization problem of the fin arrays with a “Bonded Objective Function Method” takes into 

account only thermal analysis, considering the fluid-dynamic variables only in the constraint 

of maintaining a minimum interfin space between two contiguous fins, so that well defined 

heat transfer coefficient values could be maintained, neglecting its variation as a function of 

the interfin spacing.   

As optimum design problem the minimization of the weight for a given heat flow (least 

material optimization) and the maximization of the heat flow for a given weight are 

considered.  A procedure for a general analysis of the problem is given. A detailed analysis 

has been limited only to fins with insulated tip when an analytical solution of the problem is 

available. In this case, the two problem examined have often a coincident solution and the 

possible differences are related to the discrete nature of the variable n, the number of fins of 

the array.  Two different configurations has been examined (“open” and “closed” array) and it 

is shown how the optimal solutions denote meaningful differences.  

The problem of the minimum weight optimization for a given heat flow has been considered 

the more meaningful on the practical point of view, and a series of results related to this case 

are given. In particular the results obtained in two cases (interfin spacing of the order of 15 

mm and interfin spacing of 5 mm) are carefully discussed and analyzed. In both the cases the 

assumption of considering constant value of the heat transfer coefficients can be considered 

acceptable assumptions. 

First of all some not meaningless differences with respect to other methods are shown, then a 

critical analysis of the results has been carried out. The results obtained for the optimum 

design problem are often with the minimum permissible interfin spacing, so, from the 

mathematical point of view, it means that the optimum design problem has often a solution at 

the boundary of the domain and it appears to be dominated by the imposed constraints.  

The optimum number of fins of the array decrease with the increase of the heat flow.  

Moreover the maximum heat flow at which the optimum design problem has a solution can be 

analitically determined.  For heat flow lower than the 50% of the maximum defined by Eqs. 

(35), the optimum fin number is similar to that permitted by the constraint on the minimum 

interfin spacing, while if the assigned heat flow increases, the optimum fin number is 

significantly lower than the maximum number permitted by the minimum interfin spacing.  It 
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is also shown how in the definition of the optimal configuration an important role is played by 

the heat transfer coefficient on the interfin spacing. A reduction of this value determines a 

sensible increase of the weight of the fin array.   

The trends observed in the analysis of some results discussed in this paper and some heat 

sinks or fin arrays used shows that manufacturability constraints, when applied to thermal 

design, will result in heat sinks with reduced thermal performance. For this reason, the 

procedure developed in the paper seems to be very attractive to be applied to practical heat 

dissipation problems. The method proposed can be also improved with the introduction of a 

thermal and fluid dynamic model; in this case it is necessary to introduce a model of the heat 

transfer coefficient h and of the fritction factor f that will depend on Re number and 

consequently on the hydraulic diameter of the fin channel, and it will be necessary to 

complicate the problem with the introduction of a constraint related to the pressure drop in the 

fin channels. 
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