Università di Pisa
Sistema bibliotecario di ateneo

Third-harmonic exponent in three-dimensional N-vector models

Prato, Martino De and Pelissetto, Andrea and Vicari, Ettore (2003) Third-harmonic exponent in three-dimensional N-vector models. Physical review. B, Condensed matter and materials physics, 68 . 092403. ISSN 1550-235X

Full text not available from this repository.


We compute the crossover exponent associated with the spin-3 operator in three-dimensional O(N) models. A six-loop field-theoretical calculation in the fixed-dimension approach gives $\phi_3 = 0.601(10)$ for the experimentally relevant case N=2 (XY model). The corresponding exponent $\beta_3 = 1.413(10)$ is compared with the experimental estimates obtained in materials undergoing a normal-incommensurate structural transition and in liquid crystals at the smectic-A--hexatic-B phase transition, finding good agreement.

Item Type: Article
Additional Information: Imported from arXiv
Subjects: Area02 - Scienze fisiche > FIS/02 - Fisica teorica, modelli e metodi matematici
Divisions: Dipartimenti (until 2012) > DIPARTIMENTO DI FISICA " E. FERMI"
Depositing User: dott.ssa Sandra Faita
Date Deposited: 09 Apr 2015 15:29
Last Modified: 09 Apr 2015 15:29
URI: http://eprints.adm.unipi.it/id/eprint/1793

Repository staff only actions

View Item